

1.

a. Any three of the following

- Carbon dioxide (CO_2)
- Methane (CH_4)
- Water vapour (H_2O)
- Nitrous oxide (NO_2)

1----mark

b. Describe type of energy and absorption:

- Shortwave UV energy from the Sun is absorbed by the Earth and re-emitted as low energy infrared radiation (IR) 1----mark
- Due to the molecular properties of greenhouse gases they absorb IR emitted from Earth's surface 1----mark, thus causing the atmosphere to trap heat, which contributes to global warming and climate change 1----mark

2. Gas pressure is the force per unit area exerted by all gas molecules as they collide with the walls of their container.

1---- mark for mentioning force due to collisions over a certain area,

1---- mark for mentioning it is the total amount of molecules that collectively contribute to the pressure.

3. Given: SLC (0°C (273 K), 100 kPa), molar volume of an ideal gas = 24.8 L/mol.

a. 5.00 g N_2

- Molar mass N_2 = 28.02 g/mol
- Moles: $n = \frac{5.00}{28.02} = 0.1784 \text{ mol}$ 1----mark
- Volume = $n \times 24.8 \text{ L} = 0.1784 \times 24.8 = 4.43 \text{ L}$ 1----mark

b. 1.80 g H_2O

- Molar mass H_2O = 18.02 g/mol
- Moles: $n = \frac{1.80}{18.02} = 0.0999 \text{ mol}$ 1----mark
- Volume: $V = 0.0999 \times 24.8 = 2.48$ 1----mark

4. $V = 2.50 \text{ L}$, $P = 100 \text{ kPa}$, $T = 35^\circ\text{C} = 308 \text{ K}$, $R = 8.314 \text{ kPa}\cdot\text{L}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$

$$n = \frac{PV}{RT} = \frac{100 \times 2.50}{8.314 \times 308} = \frac{250}{2560.712} = 0.0976 \text{ mol}$$

1----mark for correct formula,

1----mark for correct calculation

5. Volume of gas mixture

Given: 0.140 g N_2 and 0.640 g O_2 , $P = 100 \text{ kPa}$, $T = 25^\circ\text{C} = 298 \text{ K}$, $R = 8.314 \text{ kPa}\cdot\text{L}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$

- Moles N_2 : $n = 0.140/28.02 = 0.004996 \text{ mol}$
- Moles O_2 : $n = 0.640/32.00 = 0.0200 \text{ mol}$
1----mark for mols of each gas
- Total moles: $n_{\text{total}} = 0.004996 + 0.0200 = 0.024996 \approx 0.0250$
1----mark for total (consequential marks apply)

$$V = \frac{nRT}{P} = \frac{0.0250 \times 8.314 \times 298}{100} = \frac{61.86}{100} = 0.61942 \text{ L} = 0.619 \text{ L}$$

1----mark for correct formula and calculation

1----mark for correct number of sig figs.

6. $\text{Mg} + 2\text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2$

Given: 20.0 mL H_2 produced at SLC, molar volume 24.8 L/mol

- Volume: $20.0 \text{ mL} = 0.0200 \text{ L}$
- Moles H_2 : $n = \frac{V}{24.8} = \frac{0.0200}{24.8} = 8.10 \times 10^{-4} \text{ mol}$ 1----mark
- Stoichiometry: $1 \text{ mol Mg} : 1 \text{ mol H}_2 \rightarrow$
 $\Rightarrow \text{moles Mg} = 8.01 \times 10^{-4} \text{ mol}$ 1----mark
- Mass Mg: $m = n \times M = 8.01 \times 10^{-4} \times 24.31 = 0.0196 \text{ g}$ 1----mark correct value

7. Mass of CO_2

Given: $V = 21.1 \text{ L}$, $P = 110 \text{ kPa}$, $T = 30^\circ\text{C} = 303 \text{ K}$, $R = 8.314 \text{ kPa}\cdot\text{L}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$

$$n = \frac{PV}{RT} = \frac{110 \times 21.1}{8.314 \times 303} = \frac{2321}{2518.842} = 0.921 \text{ mol}$$

1----mark

- Mass $\text{CO}_2 = n \times M = 0.921 \times 44.01 = 40.5 \text{ g}$ 1----mark

8. $\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2$

Given: mass $\text{CaCO}_3 = 2.48 \text{ kg} = 2480 \text{ g}$

- Molar mass $\text{CaCO}_3 = 100 \text{ g/mol}$
- Moles $\text{CO}_2 = \text{moles CaCO}_3 = 2480 / 100 = 24.8 \text{ mol}$ 1----mark
- $V = 300 \text{ L}$, $P = 400 \text{ kPa}$, $R = 8.314$, $T = ?$

$$T = \frac{PV}{nR} = \frac{400 \times 300}{24.8 \times 8.314} = \frac{120000}{206.0} = 582 \text{ 1----mark}$$

- $T(\text{C}) = 582 - 273 = 309^\circ\text{C}$ 1----mark

9. $3\text{H}_2 + \text{N}_2 \rightarrow 2\text{NH}_3$

a. To find the excess reactant we

- first find the mol of each reactant added.

$$\Rightarrow n_{(\text{nitrogen})} = 4.96 / 24.8 = 0.200$$

$$\Rightarrow n_{(\text{hydrogen})} = 9.92 / 24.8 = 0.400$$

1----mark for the mol of each gas

- next we divide by the equation coefficient and take the lowest value as the limiting reactant

$$\Rightarrow (\text{N}_2) 0.200 / 1 = 0.200 : (\text{H}_2) 0.400 / 3 = 0.133$$

Hydrogen is the limiting reactant hence Nitrogen is in excess.

1----mark for correctly identifying the excess reactant.

b. If 0.400 mol of hydrogen gas reacts it will use up $1/3 \times 0.400 \text{ mol}$ of N_2 gas

1----mark for using the correct stoichiometric ratio

=> Excess N_2 remaining is $0.200 - 0.133 = 0.066 \text{ mol}$

1----mark

c. If 0.400 mol of H_2 reacts completely it will form $(2/3 \times 0.400) 0.266 \text{ mol}$ of NH_3

1----mark for correct stoichiometric ratio

1----mark for correct mol given to the right number of sig figs.

$$d. \text{ Pressure: } P = \frac{nRT}{V} = \frac{(0.266+0.066) \times 8.314 \times (390+273)}{300} = 6.67 \text{ kPa}$$

1----mark for calculating the total number of mol of gas remaining.

1----mark for correct equation and value to 3 sig figs (consequential marks given)

10. CO_2 concentration in ppm

Given

- Volume of exhaust gas sample = 1.00 L
- Mass of CO_2 in sample = $4.40 \times 10^{-4} \text{ g}$
- Molar mass of CO_2 = 44.0 g mol^{-1} (from Data book)
- Molar volume at SLC = 24.8 L mol^{-1} (from Data book)

Step 1 - Convert mass of CO_2 to moles

$$n(CO_2) = \frac{4.40 \times 10^{-4}}{44.0}$$
$$n(CO_2) = 1.00 \times 10^{-5} \text{ mol}$$

1----mark

Step 2 - Convert moles of CO_2 to volume at SLC

$$V(CO_2) = n \times V_m$$
$$V(CO_2) = (1.00 \times 10^{-5}) \times 24.8$$
$$V(CO_2) = 2.48 \times 10^{-4} \text{ L}$$

1----mark

Step 3 - Calculate volume fraction of CO_2

Total exhaust volume = 2.00 L

$$\begin{aligned} \text{Volume fraction} &= \frac{2.48 \times 10^{-4}}{2.00} \\ &= 1.24 \times 10^{-4} \end{aligned}$$

1-----mark

Step 4 - Convert to ppm (v/v)

$$\text{ppm} = (1.24 \times 10^{-4}) \times 10^6$$

$$[\text{CO}_2] = 124 \text{ ppm (v/v)}$$

1-----mark

b. Calculating the total volume of CO₂ in the 4523 L sample.

$$\Rightarrow \frac{124}{10^6} \times 4523 = 0.561 \text{ litres}$$

1-----mark for correct calculation (consequential marks awarded)

1-----mark for correct sig figs